Latest Publications
Impact of seasonal climate variability on constructed wetland treatment efficiency
Dykes, Charlotte, Pearson, Jonathan M., Bending, Gary D. and Abolfathi, Soroush
Free-water surface constructed wetlands (CWs) are sustainable, low emission, nature-based solutions for water and wastewater treatment. However, the discharge of nutrient-rich effluents from CWs treating wastewater can adversely impact freshwater ecosystems and exacerbate eutrophication. Despite their ecological benefits, limited research exists on the treatment efficiency and pollutant dynamics of CWs under varying seasonal and environmental pressures. This study investigates the treatment efficiency of an integrated CW (ICW) serving as a nature-based solution for treating partially treated wastewater before release into the environment. Our findings highlight the dynamic and sensitive mechanisms influencing nutrient removal in CWs, driven by seasonal hydraulic conditions, vegetation phenology, and climatic factors. The study provides critical insights for optimizing CW design and management under fluctuating environmental conditions to enhance their resilience, ensure regulatory compliance, and maintain long-term treatment efficiency. This understanding is essential for guiding future regulatory policies and ensuring that CWs meet water quality standards in response to climate pressures.
Rootrainertrons: a novel root phenotyping method used to identify genotypic variation in lettuce rooting
Cara Wharton, Andrew Beacham, Miriam L. Gifford and James Monaghan
There is much interest in how roots can be manipulated to improve crop performance in a changing climate, yet root research is made difficult by the challenges of visualising the root system accurately, particularly when grown in natural environments such as soil. This study reports a novel, low cost, Rootrainer-based system for root phenotyping. This novel Rootrainertron method has many advantages over existing methods of phenotyping seedling roots. Rootrainers are cheap, and readily available from garden centres, unlike rhizotrons which are expensive and only available from specialist suppliers. Rootrainers allow the roots to grow in substrate medium, providing a significant advantage over agar and paper assays.This approach offers an affordable and relevant root phenotyping option and makes root phenotyping more accessible and applicable for researchers.
Impact of Phage Therapy on Pseudomonas syringae pv. syringae and Plant Microbiome Dynamics Through Coevolution and Field Experiments
Matevz Papp-Rupar, Emily R. Grace, Naina Korotania, Maria-Laura Ciusa, Robert W. Jackson, Mojgan Rabiey
Isolation of phages targeting the cherry pathogen Pseudomonas syringae pv. syringae (Pss) led to five distinct phage genotypes. Building on previous in vitro coevolution experiments, the coevolution of the five phages (individually and as a cocktail) with Pss on cherry leaves was conducted in glasshouse and field experiments. Phages effectively reduced Pss numbers on detached leaves, with no evidence of phage resistance emerging in the bacterial population. Field application of phages in a cherry orchard in Southeast England evaluated phage survival, viability and impact on bacterial populations and the microbial community. The bacterial population and phages persisted in the leaf and shoot environment as long as the bacterial host was present. In contrast to in vitro studies, the plant environment constrained the emergence of phage resistant Pss populations.
Historic manioc genomes illuminate traditional maintenance of diversity under long-lived clonal cultivation
Logan Kistler, Fabio de Oliveira Freitas, Rafal M. Gutaker, S. Yoshi Maezumi, Jazmín Ramos-Madrigal, Marcelo F. Simon, J. Moises Mendoza Flores, Sergei V. Drovetski, ¬Hope Loiselle, Eder Jorge de Oliveira, Eduardo Alano Vieira, Luiz Joaquim Castelo Branco Carvalho, Marina Ellis Perez, Audrey T. Lin, Hsiao-Lei Liu, Rachel Miller, Natalia A. S. Przelomska, Aakrosh Ratan, Nathan Wales, Kevin Wann, Shuya Zhang, Magdalena García, Daniela Valenzuela, Francisco Rothhammer, Calogero M. Santoro, Alejandra I. Domic, José M. Capriles, Robin Allaby
Manioc—also called cassava and yuca—is among the world’s most important crops, originating in South America in the early Holocene. Domestication for its starchy roots involved a near-total shift from sexual to clonal propagation, and almost all manioc worldwide is now grown from stem cuttings. In this work, we analyze 573 new and published genomes, focusing on traditional varieties from the Americas and wild relatives from herbaria, to reveal the effects of this shift to clonality. We observe kinship over large distances, maintenance of high genetic diversity, intergenerational heterozygosity enrichment, and genomic mosaics of identity-by-descent haploblocks that connect all manioc worldwide. Interviews with Indigenous traditional farmers in the Brazilian Cerrado illuminate how traditional management strategies for sustaining, diversifying, and sharing the gene pool have shaped manioc diversity.
Quantifying integrated pest management adoption in food horticulture
Jennifer Byrne, Robert Lillywhite, Henry Creissen, Fiona Thorne, Lael Walsh
Integrated Pest Management (IPM) is a crop health paradigm offering a framework for sustainable pest management. To optimise adoption it is necessary to understand how growers use IPM, to identify measures lagging in uptake or suitability for uptake and to explore limitations to both. This study has quantified IPM adoption using Irish food horticulture as a case study, through the development and application of an IPM metric based on field, protected and top fruit production systems. While our results demonstrated that IPM has been adopted, it also suggested that there is room for improvement. This presentation of an IPM measurement instrument for temperate horticulture systems provides the means to benchmark IPM performance and chart cumulative progress. This is useful to policy makers and IPM stakeholders to compare performance on a national and cross-national basis with a view to refining best practice, while defining specific components of IPM for improvement.
Stephen Parnell Publications
Assessing delimiting strategies to identify the infested zones of quarantine plant pests and diseases
Koh, Joshua, Cunnifee, Nik and Parnell, Stephen
Developing epidemiological preparedness for a plant disease invasion: Modelling citrus huánglóngbìng in the European Union
Huánglóngbìng (HLB) is a bacterial disease of citrus that has significantly impacted Brazil and the United States, although citrus production in the Mediterranean Basin remains unaffected. By developing a mathematical model of spread in Spain, we tested surveillance and control strategies before any future HLB entry in the EU. We found while some citrus production might be maintained by roguing, this requires extensive surveillance and significant chemical control, perhaps also including testing of psyllids (which spread the pathogen) for bacterial DNA. Our work highlights the key importance of early detection (including asymptomatic infection) and vector control for HLB management.